top of page

References

  • Cho, K., Shibato, J., Agrawal, G.K., Jung, Y.H., Kubo, A., Jwa, N.S., Tamogami, S., Satoh, K., Kikuchi, S., Higashi, T. and Kimura, S., 2008. Integrated transcriptomics, proteomics, and metabolomics analyses to survey ozone responses in the leaves of rice seedling. Journal of proteome research, 7(7), pp.2980-2998.

  • Cho, K., Shibato, J., Kubo, A., Kohno, Y., Satoh, K., Kikuchi, S., Sarkar, A., Agrawal, G.K. and Rakwal, R., 2013. Comparative analysis of seed transcriptomes of ambient ozone-fumigated 2 different rice cultivars. Plant signaling & behavior, 8(11), p.e26300.

  • Gottardini, E., Cristofori, A., Pellegrini, E., La Porta, N., Nali, C., Baldi, P. and Sablok, G., 2016. Suppression substractive hybridization and NGS reveal differential transcriptome expression profiles in wayfaring tree (Viburnum lantana L.) treated with ozone. Frontiers in plant science, 7, p.713.

  • Gupta, P., Duplessis, S., White, H., Karnosky, D.F., Martin, F. and Podila, G.K., 2005. Gene expression patterns of trembling aspen trees following long‐term exposure to interacting elevated CO2 and tropospheric O3. New Phytologist, 167(1), pp.129-142.

  • Iyer, N.J., Tang, Y. and Mahalingam, R., 2013. Physiological, biochemical and molecular responses to a combination of drought and ozone in Medicago truncatula. Plant, Cell & Environment, 36(3), pp.706-720.

  • KONTUNEN‐SOPPELA, S.A.R.I., Riikonen, J., Ruhanen, H., Brosche, M., Somervuo, P., Peltonen, P., Kangasjärvi, J., Auvinen, P., Paulin, L., Keinänen, M. and Oksanen, E., 2010. Differential gene expression in senescing leaves of two silver birch genotypes in response to elevated CO2 and tropospheric ozone. Plant, cell & environment, 33(6), pp.1016-1028.

  • Lane, T., Best, T., Zembower, N., Davitt, J., Henry, N., Xu, Y., Koch, J., Liang, H., McGraw, J., Schuster, S. and Shim, D., 2016. The green ash transcriptome and identification of genes responding to abiotic and biotic stresses. BMC genomics, 17(1), pp.1-16.

  • Leisner, C.P., Ming, R. and Ainsworth, E.A., 2014. Distinct transcriptional profiles of ozone stress in soybean (Glycine max) flowers and pods. BMC plant biology, 14(1), pp.1-13.

  • Leisner, C.P., Yendrek, C.R. and Ainsworth, E.A., 2017. Physiological and transcriptomic responses in the seed coat of field-grown soybean (Glycine max L. Merr.) to abiotic stress. BMC plant biology, 17(1), pp.1-11.

  • Mahalingam, R., Jambunathan, N., Gunjan, S.K., Faustin, E., Weng, H.U.A. and Ayoubi, P., 2006. Analysis of oxidative signalling induced by ozone in Arabidopsis thaliana. Plant, cell & environment, 29(7), pp.1357-1371.

  • Natali, L., Vangelisti, A., Guidi, L., Remorini, D., Cotrozzi, L., Lorenzini, G., Nali, C., Pellegrini, E., Trivellini, A., Vernieri, P. and Landi, M., 2018. How Quercus ilex L. saplings face combined salt and ozone stress: a transcriptome analysis. BMC genomics, 19(1), pp.1-18.

  • Short, E.F., North, K.A., Roberts, M.R., Hetherington, A.M., Shirras, A.D. and McAinsh, M.R., 2012. A stress‐specific calcium signature regulating an ozone‐responsive gene expression network in Arabidopsis. The Plant Journal, 71(6), pp.948-961

  • Soltani, N., Best, T., Grace, D., Nelms, C., Shumaker, K., Romero-Severson, J., Moses, D., Schuster, S., Staton, M., Carlson, J. and Gwinn, K., 2020. Transcriptome profiles of Quercus rubra responding to increased O 3 stress. BMC genomics, 21(1), pp.1-18.

  • Street, N.R., James, T.M., James, T., Mikael, B., Jaakko, K., Mark, B. and Taylor, G., 2011. The physiological, transcriptional and genetic responses of an ozone-sensitive and an ozone tolerant poplar and selected extremes of their F2 progeny. Environmental Pollution, 159(1), pp.45-54.

  • Tosti, N., Pasqualini, S., Borgogni, A., Ederli, L., Falistocco, E., Crispi, S. and Paolocci, F., 2006. Gene expression profiles of O3‐treated Arabidopsis plants. Plant, cell & environment, 29(9), pp.1686-1702.

  • Waldeck, N., Burkey, K., Carter, T., Dickey, D., Song, Q. and Taliercio, E., 2017. RNA-Seq study reveals genetic responses of diverse wild soybean accessions to increased ozone levels. BMC genomics, 18(1), pp.1-10.

  • Whaley, A., Sheridan, J., Safari, S., Burton, A., Burkey, K. and Schlueter, J., 2015. RNA-seq analysis reveals genetic response and tolerance mechanisms to ozone exposure in soybean. BMC genomics, 16(1), pp.1-13.

  • Xu, E., Vaahtera, L., Hõrak, H., Hincha, D.K., Heyer, A.G. and Brosché, M., 2015. Quantitative trait loci mapping and transcriptome analysis reveal candidate genes regulating the response to ozone in A rabidopsis thaliana. Plant, cell & environment, 38(7), pp.1418-1433.

  • Yendrek, C.R., Koester, R.P. and Ainsworth, E.A., 2015. A comparative analysis of transcriptomic, biochemical, and physiological responses to elevated ozone identifies species-specific mechanisms of resilience in legume crops. Journal of experimental botany, 66(22), pp.7101-7112.

  • Yoshida, S., Tamaoki, M., Ioki, M., Ogawa, D., Sato, Y., Aono, M., Kubo, A., Saji, S., Saji, H., Satoh, S. and Nakajima, N., 2009. Ethylene and salicylic acid control glutathione biosynthesis in ozone‐exposed Arabidopsis thaliana. Physiologia Plantarum, 136(3), pp.284-298.

  • Zhang, L., Xu, B., Wu, T., Wen, M.X., Fan, L.X., Feng, Z.Z. and Paoletti, E., 2017. Transcriptomic analysis of Pak Choi under acute ozone exposure revealed regulatory mechanism against ozone stress. BMC plant biology, 17(1), pp.1-15.

bottom of page